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Abstract

In a recent paper we introduced a new model to deal
with the problem of handling application timeliness re-
quirements in environments with loose real-time guar-
antees. This model, called the Timely Computing Base
(TCB), is one of partial synchrony. From an engineering
point of view, it requires systems to be constructed with
a small control part, a TCB module, to protect vital re-
sources with respect to timeliness and to provide basic
time related services to applications. Although many dif-
ferent instantiations of systems with a TCB can be envis-
aged, we have chosen to implement a TCB using PC hard-
ware running the Real-Time Linux operating system over
a Fast-Ethernet network. This paper describes the experi-
ence gained during the implementation process and shows
that it is possible to construct a TCB without the need for
special software or hardware components. The problem
of achieving real-time communication under RT-Linux is
also discussed: we describe the port we have done of a
Linux network driver to RT-Linux, explaining the required
modifications to allow predictability.

1 Introduction

In the recent years we have assisted to a very quick im-
provement of PC hardware that made possible the appear-
ance of increasingly demanding PC-based applications.
While most application requirements, such as process-
ing power, memory or multimedia capabilities can be ful-
filled just by increasing the available computing resources,
other, like timely or real-time behavior, still require other
solutions. This is the case of embedded applications for
shop-floor control, with strict requirements for timeliness
and predictable behavior. Although PC hardware could be
used in this case, it would require real-time operating sys-
tems that are typically expensive, proprietary and, in some
cases, unable to interact in open environments. The prob-
lem of using shared and low cost infrastructures in envi-
ronments where applications have heterogeneous timeli-
ness requirements (synchronous applications cohexisting

∗Faculdade de Ciências da Universidade de Lisboa. Bloco C5,
Campo Grande, 1749-016 Lisboa, Portugal. Navigators Home Page:
http://www.navigators.di.fc.ul.pt. This work was partially supported
by the FCT, through projects Praxis/P/EEI/12160/1998 (MICRA) and
Praxis/P/EEI/14187/1998 (DEAR-COTS), and by the EC, through
project IST-1999-11583 (MAFTIA).

with asynchronous ones), has to be dealt in the context of
system and programming models, assuming unreliable or
unpredictable environments, identifying what is critical to
timeliness and providing solutions when possible.

In a recent paper we introduced a new model to deal
with the problem of handling application timeliness re-
quirements in environments with loose real-time guaran-
tees. This model, called theTimely Computing Base
(TCB), assumes that systems, however asynchronous they
may be, and whatever their scale, can rely on services pro-
vided by a special module, the TCB, which is timely, that
is, synchronous. Furthermore, these services can be pro-
vided in a distributed way.

In terms of infrastructures, the recent public availabil-
ity of Real-Time Linux, an operating system with real-
time capabilities, designed to operate on PC hardware,
makes it a potentially good and cheap platform to im-
plement a TCB. On the other hand, the characteristics of
switched Fast-Ethernet networks, including its wide dif-
fusion, low price and potential for, under certain circum-
stances, providing real-time guarantees, makes it a poten-
tially good platform to implement a TCB.

Given the above, we started the implementation of a
TCB on RT-Linux, connected by a 100Mbit Ethernet net-
work. This paper describes the experience gained during
the implementation process and shows that it is possible
to construct a TCB without the need for special software
or hardware components. We discuss some issues that
may affect an effective real-time behavior of RT-Linux.
We also discuss the problems of real-time communication
under RT-Linux and describe the port we have done of a
Linux network driver to RT-Linux.

The paper is organized as follows. Section 2 motivates
this work and describes some related work. Then, in sec-
tion 3 the TCB model and services are described. Section
4 presents the essential characteristics of RT-Linux, and
discusses the fundamental problems to implement TCB
services. The real-time communication aspects and the
network driver for RT-Linux appear in section 5. Section
6 is devoted to the presentation of some experimental re-
sults. We conclude the paper in section 7.

2 Motivation and Related Work

The problem of handling application real-time require-
ments when the environment is unpredictable or unreli-
able is known to be a complex task. In fact, it requires a
different reasoning about the systems, not in terms of hard
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or soft real-time but it terms ofcorrect real-time. Given
that real-time or timeliness requirements are expressed by
timing specifications, correctness of execution has to rely
on the ability to (timely) detecttiming failures, so that ap-
propriate safety measures can possibly be taken.

Some previous papers have proposed system models to
tackle the partial synchrony problem. This includes the
timed-asynchronous model, where hardware clocks pro-
vide sufficient synchronism to make decisions such as ’de-
tection of timing failures’ or ’fail-safe shutdown’ [6], the
quasi-synchronous model, where some parts of the sys-
tem have enough synchronism to perform ’real-time ac-
tions’ with a certain probability [17], and the work on par-
tial synchrony presented in [7, 8]. All these papers have
in fact motivated the idea behind the work on the TCB
model [19]: the search of a generic paradigm for systems
with uncertain temporal behavior.

The significance of the TCB model in the context of
factory environments is particularly important when the
trend is to use low-cost components, shared by many ap-
plications. Given the unpredictability of such an environ-
ment, those applications with real-time requirements will
be subject to timing failures. Therefore, the implemen-
tation of several applications with different synchrony re-
quirements in a shared environment can benefit from us-
ing a model that ’knows’ about timing failures and that
provides solutions to deal with them. However, the model
is only useful if its assumptions hold with sufficient cov-
erage [15] for a given purpose. For instance, since the
TCB model assumes that a small part of the system has
synchronous properties, any implementation of the TCB
should use components that provide those properties.

A system with a TCB is not bound to a particular
hardware or network. In fact it can assume many dif-
ferent forms. For instance, a real-time embedded sys-
tem, with a watchdog circuit that stops the system when
some deadline is missed, is a good example of a rudimen-
tary TCB, with no processing capabilities, but with ’more
synchronous’ properties than the rest of the system and
with the possibility to observe its timeliness and act upon
failures. This was the approach taken in the MARS sys-
tem [13] to implement some of the safety measures. An-
other example of such a dual system is described in [9].

In this work we use PC hardware due to its low cost,
availability and potentialities. When using PC hardware
for real-time purposes, an adequate operating system must
be chosen. QNX [12], LynxOS, VxWorks and pSOS+ are
all examples of high-end RTOSs that offer good develop-
ment environments, are reliable and, above all, provide all
the necessary real-time features. However, they are com-
mercial products, provided at high costs. On the contrary,
the real-time extension to the Linux operating system, RT-
Linux [3], is free software, easily available and increas-
ingly popular. It is obviously a very attractive choice for
the purposes of our work. For the communication infras-
tructure it would be possible to choose a network with spe-
cific characteristics for real-time operation, like ATM [16]
or CAN [1], but to our evaluation purposes we use instead
a Fast-Ethernet [2] network. While the former networks
are more expensive and used for particular applications,
the later is widely used and, within certain conditions,
may also provide the required predictable behavior.

3 A Generic Model for Timely Computing

Due to lack of space, this section only presents a brief
overview of the Timely Computing Base model, its ser-
vices and interfaces. A complete and detailed description
of these issues appears in [18] and [19].

3.1 The Timely Computing Base Model

A system with a TCB is divided into two well-defined
parts: apayloadand acontrol part. The generic orpay-
load part prefigures what is normally ’the system’ in ho-
mogeneous architectures. It exists over a global network
or payload channel and is where applications run and
communicate. Thecontrol part is made of local TCB
modules, interconnected by some form of medium, the
control channel. Processesp execute on several sites,
making use of the TCB whenever appropriate. Figure 1
illustrates the architecture of a system with a TCB.
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Figure 1. The TCB Architecture.

Concerning the payload part, the important property is
that the systemcan have any degree of synchronism, that
is, if bounds exist for processing or communication de-
lays, their magnitude may be uncertain or not known. Lo-
cal clocks may not exist or may not have a bounded rate
of drift towards real time. The system is assumed to fol-
low an omissive failure model, that is, componentsonly
do timing failures— and of course, omission and crash,
since they are subsets of timing failures— no value fail-
ures occur.

In the control part, there is one local TCB at every site,
fulfilling the following construction principles (in section
4 we devote a special attention to these principles):

Interposition - the TCB position is such that no direct
access to resources vital to timeliness can be made in
default of the TCB

Shielding - the TCB construction is such that it itself is
protected from faults affecting timeliness

Validation - the TCB functionality is such that it allows
the implementation of verifiable mechanisms w.r.t.
timeliness

TCB modules are assumed to be fail-silent, that is, they
only fail by crashing. Moreover, it is assumed that the fail-
ure of a local TCB module implies the failure of that site.
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In terms of synchrony, the TCB subsystem preserves, by
construction, upper bounds on processing delays (prop-
ertyPs 1), on the drift rate of local TCB clocks (Ps 2) and
on the delivery delay of messages exchanged between lo-
cal TCBs (Ps 3).

Given the above set of construction principles and
properties, a TCB can be turned into an oracle for applica-
tions (even asynchronous) to solve their time related prob-
lems. To accomplish this, a set of minimal services has to
be defined, as well as the payload-to-TCB interface.

3.2 TCB Services

In order to keep the TCB simple, the services defined
are only those essential to satisfy a wide range of applica-
tions with timeliness requirements: ability to measure dis-
tributed durations with bounded accuracy; complete and
accurate detection of timing failures; ability to execute
well-defined functions in bounded time. Table 1 presents
an informal summary of these services.

Timely Execution

TCB 1 Eager Execution: Given any functionf with an ex-
ecution time bounded byT , the TCB is able to execute
f within T from the execution start instant

TCB 2 Deferred Execution: Given any functionf and a de-
lay D, for any deferred execution off triggered at real
timet, the TCB will not executef within D from t

Duration Measurement

TCB 3 Given any two events occurring in any two nodes at
instantsts and te, the TCB is able to measure the du-
ration between those two events with a known bounded
error. The error depends on the measurement method.

Timing Failure Detection

TCB 4 Timed Strong Completeness: Any timing failure is
detected by the distributed TCB within a known interval
from its occurrence

TCB 5 Timed Strong Accuracy: Any timely action finish-
ing no later than some know interval before its deadline
is never wrongly detected as a timing failure

Table 1. Basic services of the TCB.

3.3 Providing Adequate Programming Inter-
faces

Beside defining essential services to be provided by the
TCB, it is very important to design a programming inter-
face to allow potentially asynchronous applications to dia-
logue with a synchronous component. A relevant aspect to
understand what can be done, is that applications can only
be as timely as allowed by the synchronism of the payload
system. The TCB, although being a synchronous compo-
nent, does not make applications timelier, it only provides
the means to detect how timely they are. However, since
it can detect timing failures, it may execute timely con-
tingency plans, such as timely fail-safe shutdown. This is

very relevant in the context of shop-floor control applica-
tions, because it allows the execution of timely and orderly
safe procedures when a timing failure occurs. Another im-
portant aspect is that nothing obliges an application to cor-
rectly use, or use at all, the TCB capabilities. Applications
are autonomous entities that take advantage of the TCB by
construction. They typically use it as a pacemaker, letting
it assess (explicitly or implicitly) the correctness of past
steps before proceeding to the next step.

The interface summarized in Table 2 makes a bridge
between a synchronous environment and a potentially
asynchronous one. Some examples of how to use this in-
terface can be found in [19].

Duration Measurement
timestamp ← getTimestamp ()

tag ← startMeasurement (start ev)

end ev,duration ← stopMeasurement (tag)

Timely Execution (eager & deferred)
end ev ← exec (start ev, delay, T exec, f)

Timing Failure Detection
tag ← startLocal (start ev, spec, handler)

end ev,duration,faulty ← endLocal(tag)

tag ← send (send ev, spec, handler)

tag,deliv ev ← receive ()

dur1,faulty1 · · · durn,faultyn ←waitInfo(tag)

Table 2. Summary of the API.

4 The Real-Time Linux TCB

Given the above description of the TCB, it is clear that
any implementation of a system with a TCB is only viable
if at least some parts of the system have synchronous prop-
erties. In what follows we analyze the Real-Time Linux
(RT-Linux) system and its potential to support the imple-
mentation of a TCB.

4.1 RT-Linux System Overview

The effort to provide Unix-like operating systems with
real-time capabilities is not recent. Although several ap-
proaches exist, the RT-Linux developers followed a low-
level one, implementing a real-time kernel underneath the
operating system and making Linux itself to run as another
real-time task [3]. Since it runs with the lowest priority, it
can be preempted at any time by higher priority tasks.

The key mechanism to achieve this behavior is based
on a virtual interrupt scheme implemented within RT-
Linux. This scheme was designed to address the prob-
lem of turning the non-preemptable Linux kernel into a
preemptable one. Basically, it consists in modifying two
things: a) the interrupt table vectors, so that they point to
RT-Linux interrupt service routines instead of Linux ones;
b) the macros that Linux uses to disable and enable inter-
rupts,cli andsti, so that some RT-Linux code is exe-
cuted in its place. This interposition allows RT-Linux to
have a complete control over interrupts and, in particular,
to prevent Linux from disabling them for a long, unpre-
dictable time.
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Another important aspect of RT-Linux is that it only
provides basic services: low-level task creation, installa-
tion of interrupt service routines, and queues for commu-
nication among the real-time tasks and Linux processes.
If any real-time I/O interaction has to be done, it is neces-
sary to design specific drivers for RT-Linux. For instance,
in the current TCB implementation we had to redesign the
Linux network driver to operate under RT-Linux (see sec-
tion 5).

Finally, we should mention the existence of spe-
cific RT-Linux versions for multiprocessor architectures.
These are, however, out of our current concerns, and so
will not be considered in rest of the paper.

4.2 Implementing TCB services

In order to preserve the synchrony propertiesPs 1 to
Ps 3, the TCB module has to be constructed in the real-
time part of RT-Linux. More specifically, the parts that
deal with the API will reside on the non-real-time do-
main and only the critical parts (periodic activities and
timely executions) will have to be implemented as real-
time tasks. But there are a number of problems that
have to be solved, to obtain a valid TCB implementation.
Namely, it is necessary to find affirmative answers to the
following questions:

• Is it possible, under RT-Linux, to accurately predict
the execution time of TCB activities, which is needed
for a schedulability analysis?

• Can the TCB handle multiple service requests, arriv-
ing at unpredictable instants, and still behave timely
and provide timely services?

• Is it possible to implement a RT-Linux TCB, follow-
ing the TCB construction principles (see section 3)?

The remainder of this section discusses these ques-
tions, and where appropriate describes the solutions em-
ployed in our implementation.

Predictability in RT-Linux

In a system with RT-Linux, where activities belonging to
two different synchrony domains have to share the same
hardware resources, there are potential problems of inter-
ference. In fact, in RT-Linux it is possible to observe a
phenomena similar to priority inversion, when an higher
priority activity interrupts its execution due to some event
related to an asynchronous activity. Furthermore, the
number and frequency of these events is unknown, and
cannot be bounded. The effect is that the execution time of
real-time tasks can not be accurately predicted. We iden-
tified two situations where this effect could be observed:

• Data transfers between Linux (asynchronous) de-
vices and the host memory can be made through
DMA. These DMA bursts are out of RT-Linux con-
trol and have priority over the CPU on the access to
the system bus. Therefore, if the CPU is processing
a real-time task when a Linux device starts a DMA

transfer, the execution will stop until the DMA op-
eration finishes. For example, when a packet arrives
at a network interface, the card autonomously starts
a DMA transfer to copy the packet into the system
memory, interrupting all other activities.

• In RT-Linux systems, hardware devices (including
Linux ones) are allowed to raise interrupt requests
that are handled by the virtual interrupt layer of RT-
Linux. Whatever is done in this layer is not impor-
tant. The fact is that an handler task is executed, pos-
sibly delaying the execution of a real-time activity.

Surprisingly or not, RT-Linux is clearly not a perfect
real-time operating system, at least not for generic PC
hardware. Consequently, our approach in terms of imple-
mentation was: a) in first place, find particular solutions
to avoid or minimize the causes of unpredictable behav-
ior; b) live with the unavoidable cases, but employ safety
mechanisms that are activated upon the (expected rare) oc-
currences of timing failures.

The overhead caused by sporadic interrupts can be
avoided if they are disabled during the execution of real-
time tasks. By doing this, two TCB related (real-time)
interrupts are also disabled: the clock interrupt that drives
the RT-Linux scheduler and the interrupt generated by the
network interface card when TCB packets are received.
Fortunately, it is possible to ensure that no clock inter-
rupts have to be raised while interrupts are disabled (con-
sidering typical task lenght). Since the RT-Linux sched-
uler uses a one-shot timer to resume real-time tasks pre-
cisely when needed, it is sufficient to construct an admis-
sion control module that does not allow tasks to overlap.
This module must handle a periodic task (TFD service)
and several sporadic tasks (Timely Execution service and
failure handlers). Provided that all task periods and laten-
cies are known, the module can decide which new tasks
can be admitted. The network interrupt, on the other hand,
can occur at any instant. In consequence, real-time actions
that should be performed by the interrupt handler will be
delayed until the interrupts are enabled. The effects of this
delay will be discussed afterwards, in this section.

Regarding the problem of DMA bursts, one of the pos-
sible solutions could consist in disabling DMA transfers
or modifying the priority assignments to the bus access.
Unfortunately, this would require some architectural hard-
ware modifications, which is out of the scope of this work.
In fact, this would frustrate the basic idea of using stan-
dard PC hardware to implement the TCB. The generic so-
lution to this problem is implicitly provided by thevalida-
tion construction principle. By this principle the TCB will
know when a synchrony assumption is violated (e.g. as a
result of a DMA burst), and safety measures may possibly
be applied. The validation mechanisms are discussed in
the answer to the third question.

An approach to alleviate the problem of uncertain exe-
cution delays, is to add an extra amount to the maximum
task execution time. Note that this amount has always to
be added, at least to account for the scheduling delay vari-
ability (typical values in RT-Linux, using a 120MHz Pen-
tium based PC, are less than 20µs [3]). In section 6 we
provide our own measurements for the scheduling delay,
which were used in the implementation.
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Handling Application Requests

The TCB does not impose any restriction on the amount
or frequency of service invocations. Applications may re-
quest TCB services whenever they want. Similarly, they
are free to provide whatever service parameters they want.
The problem is to conciliate this flexibility with the lim-
ited processing capacity of the TCB.

A simple but effective solution, is to implement an ad-
mission control layer in the TCB interface to filter the re-
quests that cannot be served or that provide incorrect pa-
rameters. The admission procedures, although being part
of the TCB interface, have to be executed in the payload
part of the system to avoid the possibility of an uncon-
trolled access to the real-time part. In the case ofstar-

tExec, startLocal or send requests, which may re-
quire real-time tasks to be executed, the admission mod-
ule has to know the start instant and the deadline of these
tasks. If the service can not be provided, the application
will be informed of the denial reasons.

But the admission control layer does not solve all the
interfacing problems. In the above three services, the real-
time function specified by the application through param-
eterf or handler (see Table 2) cannot be verified at
run-time. In our RT-Linux implementation, every real-
time function is previously loaded into the kernel space
(by means of the Linux loadable module facilities) and
the application only provides a reference to one of those
pre-loaded functions. Each loadable module contains a
real-time function and its estimated worst case execution
time (WCET). Since the TCB does not inspect the func-
tion code, neither verifies the correctness of the provided
WCET, it is assumed that users will not intentionally pro-
vide incorrect information. Note that the ability lo load
a kernel module is only available to privileged or trusted
users. Nevertheless, it is possible that unintentional mis-
takes occur, like the provision of functions with run-time
errors or the provision of a WCET smaller than the real
one. In the former case, since the error may lead to an un-
controlled and unpredictable system behavior, any solu-
tion would require specific fault-tolerance techniques. On
the other hand, the provision of a smaller WCET may at
worse generate a timing failure. In this case, the TCB self-
checking procedures (that we discuss below) will detect
the timing failure and execute adequate safety procedures.

In the current implementation, we assume that the user
is responsible for the calculation of WCET values. How-
ever, it would be possible to develop a TCB external
module for off-line code generation and WCET calcu-
lation. Such an integrated solution would simplify the
development of applications and would solve the above-
mentioned failure problems by ensuring the correctness
of all parameters.

Enforcing Interposition, Shielding and Validation

Any implementation of a TCB must be ruled by theIn-
terposition, ShieldingandValidationconstruction princi-
ples. Fortunately, and perhaps naturally, the RT-Linux ar-
chitecture greatly simplifies the task. In fact, since RT-
Linux is designed to allow the execution of real-time tasks
within an asynchronous system, it must control essential
resources for timeliness (interposition) and must preserve

the real-time behavior no matter what happens in the rest
of the system (shielding). Since these two principles are
implicitly granted, our concerns in terms of implementa-
tion are essentially focused on the validation principle.

The TCB is assumed to be fully synchronous, as per
propertiesPs 1 to Ps 3. Therefore, it should be built in a
way that secures those properties with〈bound, coverage〉
pairs adequate to the timescales and criticality of the ap-
plication. But there is always a risk of deadlines being
missed, mainly if sporadic or event-triggered computa-
tions take place [5]. To amplify the coverage of thePs
properties the TCB employs a few measures that are based
on the validation principle. The idea is to transform unex-
pected timing failures into crash failures, enforcing a fail-
silent behavior. The measures are carried out using mon-
itoring mechanisms based on fail-awareness techniques,
i.e., techniques that allow a component to realize it has
suffered a timing failure [10]. As shown in Figure 2, the
role of these mechanisms, to which we callself-checking
mechanisms, is to observe the interactions between the
TCB services and the system hardware resources, detect
violations of assumptions, and, if that happens, activate a
fail-silence switch.
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Figure 2. Block Diagram of a RT-Linux sys-
tem with a TCB

Although it would be possible to implement self-
checking mechanisms to observe all threePs properties,
we assume thatPs 2 (clocks) is always valid. Therefore,
the implementation only considers self-checking mecha-
nisms forPs 1 (processing) andPs 3 (communication).

To detect unexpected timing failures on processing de-
lays (typically, executions exceeding their WCET), we
use the local clock to measure execution durations. For
each time-critical computation starting at instantTs, with
a maximum duration ofTc, the self-checking procedure
sets an alarm for the desired deadline (tdead = Ts+Tc). If
the computation does not end bytdead the alarm trips and
causes the immediate activation of the fail-silence switch,
crashing the whole site. Note that the time required to
execute the self-checking procedures has to be taken into
account by the admission control layer.

To detect a violation ofPs 3, message delivery delays
have to be measured. This is done using a round-trip du-
ration measurement technique similar to the one used to
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measure distributed durations. The idea is to build a fail-
aware broadcast [11] as the basic inter-TCB communica-
tion primitive. When a message is not delivered on time,
the service raises an exception that causes the immedi-
ate activation of the fail-silence switch. Note that since
the exception is not raised at the deadline, but when the
message is delivered, it is not possible to enforce a timely
shut-down in all cases. At worse, the coverage amplifi-
cation effect will not be observed, being the situation as
good as without the self-checking mechanisms.

The measurement of message delivery delays in the
fail-aware broadcast requires timestamps to be generated
on send and delivery events. To obtain accurate measure-
ments, in our implementation this is done by the network
driver, right before transferring a packet to the network
interface card, and as soon as a new message is stored in
memory (through DMA) and an interrupt is raised. Even
though, there is a small latency associated to the execu-
tion of the interrupt service routine that depends on the
maximum interval during which the interrupts are dis-
abled (while the TCB executes some real-time activity).
Fortunately, since task execution times are typically much
shorter than message delivery delays, the impact on the
measured delivery delay is practically negligible.

5 Implementing Communication Services

In our RT-Linux implementation, the TCB syn-
chronous communication channel is based on a physi-
cally different network from the one supporting thepay-
load channel. For thecontrol channel we have used a
switched Fast-Ethernet network, exclusively dedicated to
connect local TCBs. The rest of the system is intercon-
nected through a normal 10Mbit Ethernet network. Note
that this dual network architecture is not strictly required
by the TCB model. It would be possible to use some of
the current networks to set up virtual channels with pre-
dictable timing characteristics, coexisting with essentially
asynchronous channels [4, 16].

Given that we have a dedicated network for the con-
trol channel, the problem of achieving predictability is
much alleviated. In one hand, since traffic generation
is restricted to the TCB, we can easily control the net-
work load. On the other hand, by exploiting some spe-
cific characteristics of switched Fast-Ethernet networks, it
is possible to eliminate the unpredictability introduced by
the Binary Exponential Back-off collision resolution algo-
rithm of Ethernet networks. The solution simply consists
is avoiding packet collisions. This can be achieved by con-
necting each port of the switch to a single station to ensure
that at most one adapter may transmit on each direction of
the full-duplex link. Therefore, provided that the switch
buffering capacity is not exceeded (which would introduce
additional, possibly unpredictable delays), it is possible to
guarantee a maximum transmission delay for each packet.

However, the end-to-end delivery delay also depends
on the time it takes to actually send and receive messages
or, in other words, on the actions performed by the net-
work driver. This will be discussed next.

5.1 The TCB Network Device Driver

The standard Linux network driver was not designed
for real-time operation. Therefore, to achieve a real-time
behavior within the TCB and the RT-Linux kernel itself
we had to redesign this driver.

For the port, we used the standard Linux driver for
3COM Ethernet cards (model 3C905b), publicly available
as part of the Linux kernel distribution under the name
3c59x.c. Although most of the original code has re-
mained unchanged, like some functions for booting up,
shutting down, or retrieving statistics, the final result is
not a generic driver, but one specifically designed to oper-
ate under the TCB.

The crucial modifications took place at the interface
between the driver and the upper levels. The original
Linux driver uses an upcall mechanism to deliver incom-
ing frames to the layer above it. Since this upcall (or mes-
sage copy) is executed by the driver interrupt service rou-
tine, in RT-Linux this would consume real-time resources.
Furthermore, since messages arrive sporadically the pro-
cessing overhead would be unpredictable. The solution
is conceptually very simple. When the network interface
card receives a new frame it starts an autonomous DMA
transfer and signals the driver (with an interrupt) when
the transfer completes. Then, the driver interrupt service
routine gets a timestamp and acknowledges the interrupt:
no copies are done, neither the message contents are ana-
lyzed. Therefore, the execution overhead of the interrupt
routine can be neglected. The driver simply leaves mes-
sages in the buffers, waiting for the upper layer to con-
sume those messages periodically.

This approach requires the consuming rate to be at least
equal to the rate of incoming messages. Fortunately, since
we have control over the number of messages sent to the
network, it is easy to know the rate of incoming messages.
The period of the consuming task is calculated in order to
prevent buffer overflows and consequent message losses.

Provided that all the above bounds are enforced, this
approach allows the construction of a real-time commu-
nication service under RT-Linux. In fact, it can be guar-
anteed that every message is consumed within a bounded
amount of time after it has been transmitted. This bound
depends on the maximum delivery delay (which, for a
given load pattern and message size, can be bounded) and
on the period of the consuming task. Note that this pe-
riod should be made as small as possible, since some TCB
parameters (e.g. the maximum failure detection latency)
depend on it.

5.2 Device Driver Services

Beside the management services provided by the stan-
dard Linux driver, the RT-Linux network driver provides
the services for transmitting and receiving messages. The
former can be used to reliably broadcast an Ethernet
packet to the network and the later is used to consume
a packet from the device driver buffer.

The transmission service was designed to operate ex-
clusively in broadcast mode because the TCB always dis-
seminates messages to all other TCBs. When a transmis-
sion request is issued, the driver generates a timestamp



www.manaraa.com

that is also sent and that will be used to measure an upper
bound for the delivery delay.

The reliability of the transmission is obtained by letting
the service client specify an assumed network omission
degree, and by sending a sufficient number of replicated
messages to mask that omission degree. The driver was
designed to optimize the replicated transmission: instead
of copying a message into several transmission buffers,
it maps several descriptors of the transmission table to
the same memory buffer. On the receiver side, message
replicas are not processed by the driver. This would force
message contents to be inspected and, consequently, an
increased overhead. Duplicate messages are simply dis-
carded by the TCB. Note that all message replicas share
the same send timestamp, and thus the maximum delivery
delay is calculated for the last replica.

The reception service is used to read messages from
driver buffers. When there are available messages, the ser-
vice returns all of them along with their reception times-
tamps. These timestamps, and the send timestamps con-
tained in the messages, will be used by the self-checking
mechanism to calculate delivery delays.

6 Experimental Results

This section presents the results of a few experiments
that we have conducted with the objective of obtaining
an initial intuition of what could be expected, in terms
of timeliness, from the RT-Linux system and from the
switched Fast-Ethernet network. We are currently per-
forming extensive analysis of the essential timing param-
eters, and will publish them in a future paper.

The tests were performed using the experimental in-
frastructure depicted in Figure 3. We used three 500MHz
PentiumIII based PCs with the RT-Linux system and a
TCB, interconnected by a 3COM SuperStack II Base-
line switch. For the measurements we used another PC
running a special measurement tool (Event Timestamp-
ing Tool) that we have developed. This tool consists of a
small kernel booted up from a floppy disk, which executes
a simple program to read events from an input (the parallel
port) and store corresponding timestamps. The granular-
ity of the timestamps depends on the processor speed, but
is typically in the order of a few nanoseconds. A detailed
description of this tool can be found in [14].

RT-Linux
with TCB

PC with Event
Time-Stamping Tool

ETT probes connected
to parallel ports

Fast-Ethernet
switch

Fast-Ethernet links

RT-Linux
with TCB

RT-Linux
with TCB

Figure 3. Experimental infrastructure.

However, our first experience was performed without
using this tool. The test, to measure the variability of the
scheduling delay in RT-Linux, consisted in scheduling a

real-time task at some instantt and obtaining a timestamp
ts (from the local clock) as soon as the task was released.
We measured a maximum scheduling delay (ts − t) of
about 18µs, which is similar to the assumed value of 20µs.
The test was performed under heavy system load condi-
tions (generated by payload applications), and for task pe-
riods ranging from 100µs to 100ms.

We also measured the scheduling delay variability us-
ing the Event Timestamping Tool. We executed a peri-
odic real-time task that did nothing but set up an event on
the parallel port. The variability of scheduling delays, for
task periods ranging from 100µs to 10ms, was lower than
17µs, without load, and lower than 26µs, under heavy load
conditions. This confirms, once again, our expectations.

To analyze the network behavior we performed a few
more tests using the measurement tool. The goal was to
validate our expectations about the deterministic charac-
teristics of Fast-Ethernet under controlled load conditions
and with switch ports allocated to unique nodes. There-
fore, the tests consisted in measuring message delivery
delays using different message sizes, while increasing the
transmission rates until message loss started to be ob-
served (when reaching thezero-losstransmission period).

Delivery delays were measured by setting up an event,
at the driver level, upon each message transmission or
reception. Since all messages are broadcast, each trans-
mission generates three events (a send and two receive
events). We performed eight experiences, with all three
TCBs transmitting simultaneously, for messages with 100,
300, 680 and 1024 bytes, and transmission periods of
10ms and 1ms. Three more experiences were also con-
ducted to evaluate thezero-lossperformance of the net-
work. These were for messages with 300, 680 and 1024
bytes. With messages of 100 bytes we were not able to
reach thezero-losspoint, since with only three sending
stations too much system resources were required.

The value of 1024 bytes ensures that no receive over-
runs can possibly happen at the receiver, and that no mes-
sages will be lost by this reason. This value was calculated
for receiver input FIFOs with 2048 bytes and for a burst of
two messages. In each experiment nearly 30000 message
delivery delays were measured. Minimum and maximum
delays are presented in Table 3.

Frame size 52µs 113µs 168µs 1ms 10ms
100 bytes 42-47 42-49
300 bytes 78-221 84-122 83-90
680 bytes 153-258 153-178 162-177
1024 bytes 221-348 221-359 231-279

Zero-loss period
Transmission period

Table 3. Message delivery delays ( µs).

Although these were not extensive tests, the results are
nevertheless sufficient to sort out a few conclusions. With-
out any further details it is possible to observe that deliv-
ery delays can be kept within reasonable intervals, with
maximum values not exceeding a few hundred microsec-
onds. It is also possible to observe that the length of the
intervals (as well as the upper values) increase with the
amount of traffic sent to the network. This is due to higher
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switching delays, caused by extra buffering time when the
switch is operating under heavy load conditions. Note that
in the experiences corresponding to thezero-lossperiod,
the (input) throughput is near the theoretical maximum
network capacity of 100Mbit/s (for example, 2 flows of
300 byte frames with a period of 52µs correspond to near
93Mbit/s).
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Figure 4. Delivery delay distribution.

In Figure 4 it is possible to observe the distribution
of delivery delays for one of thezero-lossperiod expe-
riences. In terms of probability distribution it is clear that
there is a peak around the value of 130µs, and that the
probability of delivery delay values above 230µs is ex-
tremely low. Given the fact that no message loss is ob-
served in these conditions, we can conclude that our ini-
tial assumptions about the predictability of Fast-Ethernet
networks can indeed be sustainable. Nevertheless, we are
currently performing further tests have to consolidate the
present results.

7 Concluding Remarks

In this paper we discussed the problem of implement-
ing a TCB without using special hardware or software
components. We have used the RT-Linux operating sys-
tem, PC hardware, and a Fast-Ethernet switched network.

The problem of achieving real-time communication us-
ing these components was discussed in detail. The so-
lution combines some features of switched Fast-Ethernet
networks with a requirement for bounded network load.
We describe our implementation of a real-time network
driver for RT-Linux.

Finally, we have presented some experimental results,
which were obtained to confirm some basic assumptions.
Those results have shown that the RT-Linux system can be
used to schedule real-time tasks with a bounded schedul-
ing delay. We were also able to confirm that with a
switched Fast-Ethernet network it is possible to avoid net-
work collisions and that upper bounds on message deliv-
ery delays can be small and deterministic.
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